Links between Markov models and multilayer perceptrons
نویسندگان
چکیده
منابع مشابه
Links Between Markov Models and Multilayer Perceptrons
Hidden Markov models are widely used for automatic speech recognition. They inherently incorporate the sequential character of the speech signal and are statistically trained. However, the a-priori choice of the model topology limits their flexibility. Another drawback of these models is their weak discriminating power. Multilayer perceptrons are now promising tools in the connectionist approac...
متن کاملSupervised Models C1.2 Multilayer perceptrons
This section introduces multilayer perceptrons, which are the most commonly used type of neural network. The popular backpropagation training algorithm is studied in detail. The momentum and adaptive step size techniques, which are used for accelerated training, are discussed. Other acceleration techniques are briefly referenced. Several implementation issues are then examined. The issue of gen...
متن کاملConnection between multilayer perceptrons and regression using independent component analysis
The data model of independent component analysis (ICA) gives a multivariate probability density that describes many kinds of sensory data better than classical models like Gaussian densities or Gaussian mixtures. When only a subset of the random variables is observed, ICA can be used for regression, i.e. to predict the missing observations. In this paper, we show that the resulting regression i...
متن کاملQuantile regression with multilayer perceptrons
We consider nonlinear quantile regression involving multilayer perceptrons (MLP). In this paper we investigate the asymptotic behavior of quantile regression in a general framework. First by allowing possibly non-identifiable regression models like MLP's with redundant hidden units, then by relaxing the conditions on the density of the noise. In this paper, we present an universal bound for the...
متن کاملFast training of multilayer perceptrons
Training a multilayer perceptron by an error backpropagation algorithm is slow and uncertain. This paper describes a new approach which is much faster and certain than error backpropagation. The proposed approach is based on combined iterative and direct solution methods. In this approach, we use an inverse transformation for linearization of nonlinear output activation functions, direct soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 1990
ISSN: 0162-8828
DOI: 10.1109/34.62605